168 research outputs found

    Application of Differential Transform Method to the Generalized Burgers–Huxley Equation

    Get PDF
    In this paper, the differential transform method (DTM) will be applied to the generalized Burgers-Huxley equation, and some special cases of the equation, say, Huxley equation and Fitzhugh-Nagoma equation. The DTM produces an approximate solution for the equation, with few and easy computations. Numerical comparison between differential transform method, Adomian decomposition method and Variational iteration method for Burgers-Huxley, Huxley equation and Fitzhugh-Nagoma equation reveal that differential transform method is simple, accurate and efficient

    Exp and modified Exp function methods for nonlinear Drinfeld–Sokolov system

    Get PDF
    AbstractIn this paper, Exp-function and its modification methods have been applied to obtain an exact solution of the nonlinear Drinfeld–Sokolov system (DS). Modification of the method was first introduced by the same authors. The prominent merit of this method is to facilitate the process of solving systems of partial differential equations. These methods are straightforward and concise by themselves; moreover, their applications are promising to obtain exact solutions of various partial differential equations. It is shown that the methods, with the help of symbolic computation, provide very effective and powerful mathematical tools for solving such systems

    An analytical approximation to the solution of a wave equation by a variational iteration method

    Get PDF
    AbstractIn this work, a variational iteration method, which is a well-known method for solving functional equations, has been employed to solve the general form of a wave equation which governs numerous scientific and engineering experimentations. Some special cases of wave equations are solved as examples to illustrate the capability and reliability of the method. The results reveal that the method is very effective. The restrictions of the method are mentioned

    Approximating Solutions for Ginzburg – Landau Equation by HPM and ADM

    Get PDF
    In this paper, an analytical approximation to the solution of Ginzburg-Landauis discussed. A Homotopy perturbation method introduced by He is employed to derive the analytic approximation solution and results compared with those of the Adomian decomposition method. Two examples are presented to show the capability of the methods. The results reveal that the methods are almost equally effective and promising

    Differential Transform Method for Nonlinear Parabolic-hyperbolic Partial Differential Equations

    Get PDF
    In the present paper an analytic solution of non-linear parabolic-hyperbolic equations is deduced with the help of the powerful differential transform method (DTM). To illustrate the capability and efficiency of the method four examples for different cases of the equation are solved. The method can easily be applied to many problems and is capable of reducing the size of computational work

    Differential Transform Method for Quadratic Riccati Differential Equation,

    Get PDF
    Abstract: In this article differential transform method (DTM) is considered to solve quadratic Riccati differential equation. The results derived by differential transform method will be compared with the results of homotopy analysis method and Adomian decomposition method. It would be shown that this method used for quadratic Riccati differential equation is more effective and promising than homotopy analysis method and Adomain decomposition method. An efficient recurrence relation for solving these equations will be obtained

    Cubic hat-functions approximation for linear and nonlinear fractional integral-differential equations with weakly singular kernels

    Get PDF
    In the current study, a new numerical algorithm is presented to solve a class of nonlinear fractional integral-differential equations with weakly singular kernels. Cubic hat functions (CHFs) and their properties are introduced for the first time. A new fractional-order operational matrix of integration via CHFs is presented. Utilizing the operational matrices of CHFs, the main problem is transformed into a number of trivariate polynomial equations. Error analysis and the convergence of the proposed method are evaluated, and the convergence rate is addressed. Ultimately, three examples are provided to illustrate the precision and capabilities of this algorithm. The numerical results are presented in some tables and figures

    Solutions of fractional gas dynamics equation by a new technique

    Full text link
    [EN] In this paper, a novel technique is formed to obtain the solution of a fractional gas dynamics equation. Some reproducing kernel Hilbert spaces are defined. Reproducing kernel functions of these spaces have been found. Some numerical examples are shown to confirm the efficiency of the reproducing kernel Hilbert space method. The accurate pulchritude of the paper is arisen in its strong implementation of Caputo fractional order time derivative on the classical equations with the success of the highly accurate solutions by the series solutions. Reproducing kernel Hilbert space method is actually capable of reducing the size of the numerical work. Numerical results for different particular cases of the equations are given in the numerical section.This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089.Akgül, A.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences. 43(3):1349-1358. https://doi.org/10.1002/mma.5950S13491358433Singh, J., Kumar, D., & Kılıçman, A. (2013). Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform. Abstract and Applied Analysis, 2013, 1-8. doi:10.1155/2013/934060Momani, S. (2005). Analytic and approximate solutions of the space- and time-fractional telegraph equations. Applied Mathematics and Computation, 170(2), 1126-1134. doi:10.1016/j.amc.2005.01.009Hajipour, M., Jajarmi, A., Baleanu, D., & Sun, H. (2019). On an accurate discretization of a variable-order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 69, 119-133. doi:10.1016/j.cnsns.2018.09.004Meng, R., Yin, D., & Drapaca, C. S. (2019). Variable-order fractional description of compression deformation of amorphous glassy polymers. Computational Mechanics, 64(1), 163-171. doi:10.1007/s00466-018-1663-9Baleanu, D., Jajarmi, A., & Hajipour, M. (2018). On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dynamics, 94(1), 397-414. doi:10.1007/s11071-018-4367-yJajarmi, A., & Baleanu, D. (2018). A new fractional analysis on the interaction of HIV withCD4+T-cells. Chaos, Solitons & Fractals, 113, 221-229. doi:10.1016/j.chaos.2018.06.009Baleanu, D., Jajarmi, A., Bonyah, E., & Hajipour, M. (2018). New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1684-xJajarmi, A., & Baleanu, D. (2017). Suboptimal control of fractional-order dynamic systems with delay argument. Journal of Vibration and Control, 24(12), 2430-2446. doi:10.1177/1077546316687936Singh, J., Kumar, D., & Baleanu, D. (2018). On the analysis of fractional diabetes model with exponential law. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1680-1Kumar, D., Singh, J., Tanwar, K., & Baleanu, D. (2019). A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. International Journal of Heat and Mass Transfer, 138, 1222-1227. doi:10.1016/j.ijheatmasstransfer.2019.04.094Kumar, D., Singh, J., Al Qurashi, M., & Baleanu, D. (2019). A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations, 2019(1). doi:10.1186/s13662-019-2199-9Kumar, D., Singh, J., Purohit, S. D., & Swroop, R. (2019). A hybrid analytical algorithm for nonlinear fractional wave-like equations. Mathematical Modelling of Natural Phenomena, 14(3), 304. doi:10.1051/mmnp/2018063Kumar, D., Tchier, F., Singh, J., & Baleanu, D. (2018). An Efficient Computational Technique for Fractal Vehicular Traffic Flow. Entropy, 20(4), 259. doi:10.3390/e20040259Goswami, A., Singh, J., Kumar, D., & Sushila. (2019). An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A: Statistical Mechanics and its Applications, 524, 563-575. doi:10.1016/j.physa.2019.04.058Mohyud-Din, S. T., Bibi, S., Ahmed, N., & Khan, U. (2018). Some exact solutions of the nonlinear space–time fractional differential equations. Waves in Random and Complex Media, 29(4), 645-664. doi:10.1080/17455030.2018.1462541Momani, S., & Shawagfeh, N. (2006). Decomposition method for solving fractional Riccati differential equations. Applied Mathematics and Computation, 182(2), 1083-1092. doi:10.1016/j.amc.2006.05.008Hashim, I., Abdulaziz, O., & Momani, S. (2009). Homotopy analysis method for fractional IVPs. Communications in Nonlinear Science and Numerical Simulation, 14(3), 674-684. doi:10.1016/j.cnsns.2007.09.014Yıldırım, A. (2010). He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics, 87(13), 2998-3006. doi:10.1080/00207160902874653Momani, S., & Odibat, Z. (2007). Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals, 31(5), 1248-1255. doi:10.1016/j.chaos.2005.10.068Rida, S. Z., El-Sayed, A. M. A., & Arafa, A. A. M. (2010). On the solutions of time-fractional reaction–diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 15(12), 3847-3854. doi:10.1016/j.cnsns.2010.02.007Machado, J. A. T., & Mata, M. E. (2014). A fractional perspective to the bond graph modelling of world economies. Nonlinear Dynamics, 80(4), 1839-1852. doi:10.1007/s11071-014-1334-0Raja Balachandar, S., Krishnaveni, K., Kannan, K., & Venkatesh, S. G. (2018). Analytical Solution for Fractional Gas Dynamics Equation. National Academy Science Letters, 42(1), 51-57. doi:10.1007/s40009-018-0662-xWang, Y.-L., Liu, Y., Li, Z., & zhang, H. (2018). Numerical solution of integro-differential equations of high-order Fredholm by the simplified reproducing kernel method. International Journal of Computer Mathematics, 96(3), 585-593. doi:10.1080/00207160.2018.1455091Gumah, G. N., Naser, M. F. M., Al-Smadi, M., & Al-Omari, S. K. (2018). Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1937-8Al-Smadi, M. (2018). Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Engineering Journal, 9(4), 2517-2525. doi:10.1016/j.asej.2017.04.006Kashkari, B. S. H., & Syam, M. I. (2018). Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation. Complexity, 2018, 1-7. doi:10.1155/2018/2304858Akgül, A., & Grow, D. (2019). Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces. Differential Equations and Dynamical Systems, 28(3), 715-744. doi:10.1007/s12591-019-00453-3Akgül, A., Khan, Y., Akgül, E. K., Baleanu, D., & Al Qurashi, M. M. (2017). Solutions of nonlinear systems by reproducing kernel method. The Journal of Nonlinear Sciences and Applications, 10(08), 4408-4417. doi:10.22436/jnsa.010.08.33Karatas Akgül, E. (2018). Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 145-151. doi:10.11121/ijocta.01.2018.00568Akgül, A., Inc, M., & Karatas, E. (2015). Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 8(6), 1055-1064. doi:10.3934/dcdss.2015.8.1055Akgül, A., Inc, M., Karatas, E., & Baleanu, D. (2015). Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Advances in Difference Equations, 2015(1). doi:10.1186/s13662-015-0558-8Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337-337. doi:10.1090/s0002-9947-1950-0051437-7Bergman, S. (1950). The Kernel Function and Conformal Mapping. Mathematical Surveys and Monographs. doi:10.1090/surv/005Inc, M., & Akgül, A. (2014). Approximate solutions for MHD squeezing fluid flow by a novel method. Boundary Value Problems, 2014(1). doi:10.1186/1687-2770-2014-18Inc, M., Akgül, A., & Geng, F. (2014). Reproducing Kernel Hilbert Space Method for Solving Bratu’s Problem. Bulletin of the Malaysian Mathematical Sciences Society, 38(1), 271-287. doi:10.1007/s40840-014-0018-8Wang, Y., & Chao, L. (2008). Using reproducing kernel for solving a class of partial differential equation with variable-coefficients. Applied Mathematics and Mechanics, 29(1), 129-137. doi:10.1007/s10483-008-0115-yWu, B. Y., & Li, X. Y. (2011). A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method. Applied Mathematics Letters, 24(2), 156-159. doi:10.1016/j.aml.2010.08.036Yao, H., & Lin, Y. (2009). Solving singular boundary-value problems of higher even-order. Journal of Computational and Applied Mathematics, 223(2), 703-713. doi:10.1016/j.cam.2008.02.01

    Utility of Geostationary Lightning Mapper-derived lightning NO emission estimates in air quality modeling studies

    Get PDF
    Lightning is one of the primary natural sources of nitric oxide (NO), and the influence of lightning-induced NO (LNO) emission on air quality has been investigated in the past few decades. In the current study an LNO emissions model, which derives LNO emission estimates from satellite-observed lightning optical energy, is introduced. The estimated LNO emission is employed in an air quality modeling system to investigate the potential influence of LNO on tropospheric ozone. Results show that lightning produced 0.174 Tg N of nitrogen oxides (NOx = NO + NO2) over the contiguous US (CONUS) domain between June and September 2019, which accounts for 11.4 % of the total NOx emission. In August 2019, LNO emission increased ozone concentration within the troposphere by an average of 1 %–2 % (or 0.3–1.5 ppbv), depending on the altitude; the enhancement is maximum at ∼ 4 km above ground level and minimum near the surface. The southeastern US has the most significant ground-level ozone increase, with up to 1 ppbv (or 2 % of the mean observed value) difference for the maximum daily 8 h average (MDA8) ozone. These numbers are near the lower bound of the uncertainty range given in previous studies. The decreasing trend in anthropogenic NOx emissions over the past 2 decades increases the relative contribution of LNO emissions to total NOx emissions, suggesting that the LNO production rate used in this study may need to be increased. Corrections for the sensor flash detection efficiency may also be helpful. Moreover, the episodic impact of LNO on tropospheric ozone can be considerable. Performing backward trajectory analyses revealed two main reasons for significant ozone increases: long-distance chemical transport and lightning activity in the upwind direction shortly before the event.</p
    • …
    corecore